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Abstract

There is considerable research relating the structure oleao networks to their state space dynamics. In this paegxtend
the standard model to include thffexts of thermal noise, which has the potential to deflectrijedtory of a dynamical system
within its state space, sending it from one stable attract@nother. We introduce a new “thermal robustness” measthieh
guantifies a Boolean network’s resilience to such deflestidn particular, we investigate the impact of structurainiegeneity
on two dynamical properties: thermal robustness and #&tiraensity. Through computational experiments on cyclioBan
networks, we ascertain that as a homogeneous Boolean tkegwaws in size, it tends to underperform most of its heteneges
counterparts with respect to at least one of these two dysmioperties. These results strongly suggest that danrggganism’s
growth and morphogenesis, cellulaffdrentiation is required if the organism seeks to exHioith an increasing number of
attractorsand resilience to thermal noise.
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1. Introduction

Since the seminal work of Von Neumann [1], the subject ofutetl automata has received considerable and
continued attention (see [2, 3] for brief surveys). Undmrding how the structure of a cellular network impacts its
behavior as a dynamical system is crucial to determining hetworks should be built, how they evolve over time,
and how they can be made to grow while still exhibiting debatgnamical properties.

Biological networks (e.g. neural networks) are typicalipject to a Darwinian preferential selection process, and
are seen to exhibit evolution over long time scales. It isoeable to expect that this selection process would be
based not only on the structural properties [4] of netwobkg,on their dynamical properties as well [5]. Previous
researchers have considered measures such as landsaganess [6, 7] and redundancy [8] in evaluating dynamical
systems. In this work, the dynamical property we considérégobustness of a dynamical system’s attractors against
thermal noise from the environment. We refer to this propdéotrmally defined in Section 3, akermal robustness.



Thermal or Johnson-Nyquist noise manifests as non-detéstiai point mutations in the state of individual cells of
the organism. Such noisdfectively deflects the trajectory of the system within its gdhapace, and can cause it to
leave a stable orbit of one attractor by throwing it inste@d the basin of a dierent attractor.

In addition to evolution over long time scales, biologicatworks also exhibit cellular ffierentiation over short
time scales, particularly during morphogenesis, whenghaim the cellular structure frequently arise from symgnetr
breaking during growth. One striking example of this ocaarthe inner cell mass of a blastocyst, which goes on to
form the diverse and specialized tissues of the human badkid work, we explore the impact of cellfférentiation
on the thermal robustness of a network.

In our investigations we shall consider Boolean networkaased of cells whose instantaneous state is either O
or 1. Such networks have been the subject of consideratdanadssince their introduction by Kéiman [9] as plau-
sible models of genetic regulatory networks. Although Baol networks are typically considered in terms of the
well-charted class of potentially dense random Boolean ™Ng&tworks [10], here we consider the more restricted
class of linear cyclic networks. Such one dimensional aatarhave received considerable attention themselves [11],
and are already known to exhibit a significant range of thenpheena observed in their more gené¥# counter-
parts [12]. We assume that the dynamic evolution in our neksvs given by synchronous deterministic rules; it
is well-known that asynchronous behavior with small tenaptslerances can be transformed into synchronous be-
havior [13]. Our approach is computational, based on sitimrla grounded in a formal mathematical model that
builds upon existing research in the area of synchronouseBametworks and cellular automata. Determining net-
work dynamics is a computationally intensive endeavor,datd collected from the somewhat more accessible class
of synchronous, cyclic, Boolean networks is used here tw @@nclusions about the general relationship between
structural homogeneity, attractor density, and robusttethermal noise.

2. Mathematical Preliminaries

Structure. We consider organisms whose cellular structure may be laddes an undirected cyclic graph
C = (V,E) of sizen, whose vertices are considered “cells”, and are enumekated{vy, ..., Vvn-1}. Each cellv;
in V is connected in cyclic order to two neighbors, so that {(vi, Vi+1 modn)) | | = 0. .., n—1}. Microscopic cellular
behavior within an organism is modeled by fixing a functionV — ¥ that assigns to each ceile V, a function
f(v) from¥F = {g: {0,1} x {0,1} — {0, 1}}, the set of all binary Boolean functions; note tis&t = 222 = 16. The
action of f at a vertexy; can be thought of as a truth table mappifig left and right neighbors’ current state, s
state at the next time step.

S(Vi-1,t) | S(vi,t) | S(Visa,t) | S(Vi,t+1)
0 * 0 bo
0 * 1 bl
1 * 0 b,
1 * 1 bs

Since each of the bitsy, by, by, b; must be either 0 or 1, in what follows, we will frequently ube #-bit binary
stringbobsb,bs to name the functiorfi. Together, the pailG, f) define the microscopigructure of the organism. An
organism is said to beomogeneousif [Im(f)| = 1; otherwise it is said to bleeter ogeneous.

State. Since at each instant, a cell can have a value of either 0 threlinstantaneougtate of the organism is
specifiable as a functiod — {0, 1}. The state of the organism over (discrete) time may then pesented by a
functions: V x N — {0, 1} wheres(v;, t) is the state of cel; € V at timet. Since cellv; behaves (across all time)
according to functiorf (v;), and all cells are assumed to operate synchronously,dteeatthe organism evolves over
time according to the following law:

S(vi, t+ 1) = (Vi) (S(Vi-1 (modn)» 1), S(Vi+1 (modn), t))

foreachi = 0,...n— 1 andt > 0. Informally, the state of the organism'’s constituentselolves according to the
rule specified by Boolean function operating at that celjetber with the current state of its two adjacent cellular
neighbors. We denote the subset of cells whose state is f@n"X) at timet ass*(t) = {ve V | s(v,t) = 1}. Note



Figure 1. The phase space of a homogeneous network (lefg baterogeneous one (right).

that to identify the system'’s state itflices to knows* (t), since we can infer that the remaining cells are in stat@ 0. |
what follows, we will frequently identify the state of thegamism at time with the subses*(t) c V.

Dynamics. The macroscopic dynamics of the organism are represestadiaected grapls = (2V, D) whose
vertex set consists of all possible states of the organism the power set o), and whose edge sét includes
every ordered pairX, Y) for which s*(t) = X = s"(t + 1) = Y. Informally, S is a directed graph representing the
organism’s phase space, in whick ) is an edge if it can be said that whenever the organism isate Xtat timet,
it is necessarily (absent noise) in statat timet + 1.

For any pair of stateX, Z c V, we say thaK ~ Z if there existk > 1 and a sequence of statés Ys,..., Yk C V
satisfyingYp = X, Yk = Z,and {¥;, Yi;1) e Dfori =0, ...,k - 1. Informally,X ~~ Y means there is a path fro¥to
Y in the graphS. We defineX ~g Y whenever bottX ~» Y andY ~» X. To say thaX ~g Y means that irSS there is
both a path fronX to Y, and a path fronY to X; this implies thatX andY are part of the same attractor cycle.

A stateX c V is said to be “on an attractor” X ~ X. Let A c 2V be the set of all states that are on an attractor.
Since~g defines an equivalence relation #nit is possible to consider the quotient sé] [= A/R, wherein each
c € [A] represents an attractor whose constituent states are lgjeR. Conversely, given a stadec V, if X € A, we
denote the corresponding attractor A$ [ThusA is simply the subset of the organism’s phase space thatittdaast
attractor cycles, and the remaining states\ip/&Rconstitute tributaries which form the basins of attractiinX € A,
then [X] denotes the attractor thtlies in. The number of attractors in the dynamics of the oigrarns denoted

a = |[All
3. Models of Thermal Noise and Ther mal Robustness

Thermal Noise. We encode thefects of environmental thermal noise on an organism’s dyosmsing an
undirected graptv = (2¥, M) whose vertex set consists of all possible states, and wédge seM is defined in
terms of single bit mutations in stateX,(Y) € M < |(X U Y)\(X N Y)| = 1. Informally, a mutation is an edge
which connects from two states thaffdr only by 1 bit. For example, a 3-celled organism whose $$a0e0, 1 has
three possible mutations edges that connect to stated,land 01,1, and Q0,0. A mutation represents a non-
deterministic state transition that occurs when thermaenmduces one of the organism’s cells to “flip” state from 0
to 1 or from 1 to 0. The graplV is thus easily seen to be isomorphic tf/gdimensional hypercube.

Thermal robustness. Given an attractoc € [A], we considem(c) = {(X,Y) € M | X € cR, (X, Y) € M} to be the
possible mutations af. We focus on mutations out of attractors (and disregard tiomsout of basins of attraction),
because over long time scales and in the absence of therisal ao organism spends almost all of its time spinning
in its attractors. Out of the set of mutatiomgc), the subset that returns ¢R is denoted(c) = {(X,Y) e m(c) | Y ~
X} € m(c).

We define thehermal robustness of attractorc to bep(c) = |r(c)|/|m(c)|. This quantity, being equal to the fraction
of mutation edges leavingthat return back ta, is an estimate of the probability that a random mutatiot thvilow
the organism out of attractar We define themean thermal robustness of the organismas

p= é ZP(C)-
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Figure 2. Homogeneous organisms with bounded (left) andumdbed (right) numbers of attractors.
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Figure 3. Robustness of homogeneous organisms of clasf)afid 2 (right).

Informally, this quantity captures the organism’s resitie to noise-induced deflections in its state space trajetttat
cause it to leave an otherwise stable attractor. In Figure $ee examples of what the phase space of two organisms
looks like at sizen = 9. Blue edges are used for attractor cycles, while black ®dgeote tributaries; mutation&)

that return to the same attractor are in green, while thos#&dji\r(c) causing deflections to aftierent attractor are in

red.

4. Results

In what follows, we shall examine how the homogeneity (or heterogeneity) of an organism's structure (C, f)
impactsits dynamics, both in terms of its (expected) number of attractors @, and its thermal robustness p.

4.1. Homogenous Networks

The two graphs of Figure 2 describe the number of attractarshomogeneous cyclic networks of increasing
size. Note that sinceF| = 16, for each siza there are only 16 possible distinct types homogeneous mman
The 16 curves corresponding to these 16 types have beematgtento two graphs: The graph on the left shows
homogeneous organisms whose structure is defindd\byin {000Q 0001,0111 11113. In these 4 organisms we see
thata remains bounded as the organisms grow in size—that is,ithisrex constant 1, or it oscillates between 2 and 3.
In contrast, the graph on the right shows how the number @fatirse changes for homogeneous organisms whose
structure is defined bf(V) in {0010 0011 010Q 0101,0110 1000 1001 10101011 1100 1101, 1110. For these 12
organisms, we see that the number of attraatagsows unboundedly as these organisms become larger.

Based on the results of these simulations we found it usefdéfine two classes of homogeneous organisms. A
homogeneous organisr@y, f) will be said to be ofClass 1 if its number of attractore remains uniformly bounded
by some constarii as it growsn — 0. Alternately, an organism will be said to be ©fass 2 if for all constants,
there exists a size, at which the number of attractossexceed$. Informally, homogeneous organisms designated
as Class 1 if they exhibit a bounded number of attractorspamdesignated Class 2 otherwise. A growing organism
might seek an increasing number of attractors as it growsesittractors represent distinct dynamic equilibriatfer t
system.

Having partitioned homogenous organisms on the basis i@catr density in this manner, we now turn to the
question of thermal robustness. Figure 3 displays theralmistnesg for growing homogeneous Class 1 organisms.
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Figure 4. Attractors and robustness in heterogeneous isrgan
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Figure 5. Exploring the relative benefits of heterogeneityabustness.

The graph shows a constgnt 1 corresponding to the organisms which exhibiting 1 attractor; this is expected,
since having just one attractor implies that thermal nogsepose no threat to the organism’s dynamic behavior at the
level of attractors. In contrast, we see that, wheffigently large, homogeneous Class 1 organisms whose nhumber
of attractorse is bounded between between 2 and 3, have 0.5. The graphs show that during growth, the 4
homogeneous Class 1 organisms maintain relatively higimhlerobustness.

By comparison, Class 2 homogeneous organisms exhibit asiogethermal robustness, with lim imtending to
a value< 0.2 (the exceptions which prevent this from being a uniformitliane two functions who for size' Zpike
top = 1 bute = 1). The graphs of Figure 3 thus show that while growing, théhddogeneous Class 2 organisms
are unable to consistently maintain high thermal robustr&ace this dynamical property is seen to tend to a value
<0.2.

4.2. Heterogenous Networks

Given the dichotomous choice faced by homogeneous organisth respect to numbers of attractersand
thermal robustnegs here we examine whether a departure from the homogenaitjittan can serve to relieve the
organism from this bind. Unfortunately, the number of distiheterogeneous organismg#gVl = 16", which is
too large to explore exhaustively for all but small valuesofTherefore, in order to estimate expectedndp for
heterogeneous organisms of size n, we sample the spaceoddpeneous organisms of sizby constructing random
functionsf : V — #. To select 1,000 random heterogeneous organisms, for d&ame choose 1,000 random
functionsfy, ..., fi000. Eachfy assigns to celV € V a randomly chosen binary Boolean function from the 16 clwice
available inF. In effect, each cell in the organism is operating a randomly géeeteuth table. The likelihood that
this sampling procedure will generate a homogeneous aweisi16™*, which tends to 0 for large.

In Figure 4 we see the mean number of attractorsed the mean thermal robustngder 1,000 randomly selected
heterogeneous organisms of each size. The graph on thadefsghat the expected number of attracieiacreases
unboundedly with increasing size, in contrast to the litiotas exhibited by Class 1 homogeneous organisms. The
graph on the right shows that the expected robustm@gmproaches 0.5, a value that is superior to<th®2 limiting
experienced by Class 2 organisms, and comparable to thedtightness exhibited by Class 1 organisms.
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Figure 6. Heterogeneity makes it easy for a growing organgsathieve good robustness and increasing numbers oftatsac

4.3. Further Comparisons

In the previous section we considered the expected numlagtrattors and expected robustness of heterogeneous
organisms. It is problematic, however, to argue on the bafstxpected values alone, that a departure from homo-
geneity is in the interests of a growing organism. We intefrfinterests” to mean growth in number of cellular units
and number of attractors, without significant decline irrtha& robustness. Here we consider the distribution of the
random variablea andp more carefully, to determine if this is in fact the case.

In Figure 5 the chart on the left shows the proportion of hoemmpus organisms (both Class 1 and Class 2) whose
thermal robustness lies in each of the three bands: the log: 10 < p < 0.2, the middle band: .2 < p < 0.8, and
the high band: 8 < p < 1. The analogous breakdown for heterogeneous organismsiisishahe chart on the right.
Here we see that only the four Class 1 homogeneous organisingain uniformp > 0.2; the rest sfier from poor
robustness as they grow. In contrast, the chart on the rigiws that even though the expected thermal robusfness —
of heterogeneous organisms decreases as their size iesréas relative proportion of heterogeneous organisms for
which robustness is very popr< 0.2 is insignificant.

In Figure 6 the chart on the left estimates the probabiliy the robustnegsof a randomly chosen heterogeneous
organism (of a given size) will be greater than the robusteehieved by all Class 2 organisms (of corresponding
size). What we see is that except for sizes of the fofifa®et of measure 0), this probability tends to 1. The chart
on the right side of the figure shows the expected number désyc for just those heterogeneous organisms whose
robustnesp outperforms the robustness of all Class 2 organisms of thegponding size. Disregarding organisms
of size 2 (a set of measure 0), the expected number of attractorsitedniny these robustness-favored heterogenous
organisms is seen to grow unboundedly.

5. Conclusion

In Part 4.1 of this investigation we saw that as an organigwgyit faces only two possible options if it remains
homogeneous. If it chooses to be a Class 1 organism, thefi gmypy high thermal robustnegsbut sufer from
bounded numbers of attractars On the other hand, if it opts to be a Class 2 organism, thesmitemjoy unbounded
numbers of attractors, but will suffer from low thermal robustnegs

In Part 4.2 of this investigation we saw that as heterogesieoganisms grow in size, the expected number of
attractorsy is unbounded, and expected thermal robustpessigh. Thus heterogenous organisms are, on average,
able to have their cake and eat it too. They circumvent thadia of the homogeneous organisms which we found
were unable to grow and exhibit both increasing numberstid@brse and high thermal robustness.

In Part 4.3 of this investigation we saw that a randomly chdeerogeneous organism is very likely to outperform
its homogenous Class 2 counterparts of equivalent sizeresiect to robustness. Moreover, such robustness-favored
heterogenous organisms typically enjoy increasing numbgattractors as they grow. Therefore, if an organism
requires an increasing number of attractors as it growshatdthermal robustness is naturally preferred, then het-
erogeneous organisms will be selected.
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