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Abstract

There is considerable research relating the structure of Boolean networks to their state space dynamics. In this paper,we extend
the standard model to include the effects of thermal noise, which has the potential to deflect the trajectory of a dynamical system
within its state space, sending it from one stable attractorto another. We introduce a new “thermal robustness” measure, which
quantifies a Boolean network’s resilience to such deflections. In particular, we investigate the impact of structural homogeneity
on two dynamical properties: thermal robustness and attractor density. Through computational experiments on cyclic Boolean
networks, we ascertain that as a homogeneous Boolean network grows in size, it tends to underperform most of its heterogeneous
counterparts with respect to at least one of these two dynamical properties. These results strongly suggest that duringan organism’s
growth and morphogenesis, cellular differentiation is required if the organism seeks to exhibitboth an increasing number of
attractorsand resilience to thermal noise.
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1. Introduction

Since the seminal work of Von Neumann [1], the subject of cellular automata has received considerable and
continued attention (see [2, 3] for brief surveys). Understanding how the structure of a cellular network impacts its
behavior as a dynamical system is crucial to determining hownetworks should be built, how they evolve over time,
and how they can be made to grow while still exhibiting desired dynamical properties.

Biological networks (e.g. neural networks) are typically subject to a Darwinian preferential selection process, and
are seen to exhibit evolution over long time scales. It is reasonable to expect that this selection process would be
based not only on the structural properties [4] of networks,but on their dynamical properties as well [5]. Previous
researchers have considered measures such as landscape ruggedness [6, 7] and redundancy [8] in evaluating dynamical
systems. In this work, the dynamical property we consider isthe robustness of a dynamical system’s attractors against
thermal noise from the environment. We refer to this property, formally defined in Section 3, asthermal robustness.



Thermal or Johnson-Nyquist noise manifests as non-deterministic point mutations in the state of individual cells of
the organism. Such noise effectively deflects the trajectory of the system within its phase space, and can cause it to
leave a stable orbit of one attractor by throwing it instead into the basin of a different attractor.

In addition to evolution over long time scales, biological networks also exhibit cellular differentiation over short
time scales, particularly during morphogenesis, when changes in the cellular structure frequently arise from symmetry
breaking during growth. One striking example of this occursin the inner cell mass of a blastocyst, which goes on to
form the diverse and specialized tissues of the human body. In this work, we explore the impact of cell differentiation
on the thermal robustness of a network.

In our investigations we shall consider Boolean networks comprised of cells whose instantaneous state is either 0
or 1. Such networks have been the subject of considerable research since their introduction by Kauffman [9] as plau-
sible models of genetic regulatory networks. Although Boolean networks are typically considered in terms of the
well-charted class of potentially dense random Boolean “NK” networks [10], here we consider the more restricted
class of linear cyclic networks. Such one dimensional automata have received considerable attention themselves [11],
and are already known to exhibit a significant range of the phenomena observed in their more generalNK counter-
parts [12]. We assume that the dynamic evolution in our networks is given by synchronous deterministic rules; it
is well-known that asynchronous behavior with small temporal tolerances can be transformed into synchronous be-
havior [13]. Our approach is computational, based on simulations grounded in a formal mathematical model that
builds upon existing research in the area of synchronous Boolean networks and cellular automata. Determining net-
work dynamics is a computationally intensive endeavor, anddata collected from the somewhat more accessible class
of synchronous, cyclic, Boolean networks is used here to draw conclusions about the general relationship between
structural homogeneity, attractor density, and robustness to thermal noise.

2. Mathematical Preliminaries

Structure. We consider organisms whose cellular structure may be modeled as an undirected cyclic graph
C = (V, E) of sizen, whose vertices are considered “cells”, and are enumeratedV = {v0, . . . , vn−1}. Each cellvi

in V is connected in cyclic order to two neighbors, so thatE = {(vi, vi+1 (modn)) | i = 0, . . . , n− 1}.Microscopic cellular
behavior within an organism is modeled by fixing a functionf : V → F that assigns to each cellv ∈ V, a function
f (v) from F = {g : {0, 1} × {0, 1} → {0, 1}}, the set of all binary Boolean functions; note that|F | = 22·2 = 16. The
action of f at a vertexvi can be thought of as a truth table mappingvi’s left and right neighbors’ current state, tovi’s
state at the next time step.

s(vi−1, t) s(vi, t) s(vi+1, t) s(vi, t + 1)
0 ∗ 0 b0

0 ∗ 1 b1

1 ∗ 0 b2

1 ∗ 1 b3

Since each of the bitsb0, b1, b2, b3 must be either 0 or 1, in what follows, we will frequently use the 4-bit binary
stringb0b1b2b3 to name the functionf . Together, the pair (C, f ) define the microscopicstructure of the organism. An
organism is said to behomogeneous if |Im( f )| = 1; otherwise it is said to beheterogeneous.

State. Since at each instant, a cell can have a value of either 0 or 1,the instantaneousstate of the organism is
specifiable as a functionV → {0, 1}. The state of the organism over (discrete) time may then be represented by a
function s : V × N → {0, 1} wheres(vi, t) is the state of cellvi ∈ V at timet. Since cellvi behaves (across all time)
according to functionf (vi), and all cells are assumed to operate synchronously, the state of the organism evolves over
time according to the following law:

s(vi, t + 1) = f (vi)
(

s(vi−1 (modn), t), s(vi+1 (modn), t)
)

for eachi = 0, . . .n − 1 andt > 0. Informally, the state of the organism’s constituent cells evolves according to the
rule specified by Boolean function operating at that cell, together with the current state of its two adjacent cellular
neighbors. We denote the subset of cells whose state is “on” (i.e. 1) at timet as s+(t) = {v ∈ V | s(v, t) = 1}. Note



  

Figure 1. The phase space of a homogeneous network (left) anda heterogeneous one (right).

that to identify the system’s state it suffices to knows+(t), since we can infer that the remaining cells are in state 0. In
what follows, we will frequently identify the state of the organism at timet with the subsets+(t) ⊂ V.

Dynamics. The macroscopic dynamics of the organism are represented as a directed graphS = (2V ,D) whose
vertex set consists of all possible states of the organism (i.e. the power set ofV), and whose edge setD includes
every ordered pair (X, Y) for which s+(t) = X =⇒ s+(t + 1) = Y. Informally,S is a directed graph representing the
organism’s phase space, in which (X, Y) is an edge if it can be said that whenever the organism is in stateX at timet,
it is necessarily (absent noise) in stateY at timet + 1.

For any pair of statesX, Z ⊂ V, we say thatX  Z if there existsk > 1 and a sequence of statesY0, Y1, . . . , Yk ⊂ V
satisfyingY0 = X, Yk = Z, and (Yi, Yi+1) ∈ D for i = 0, . . . , k − 1. Informally,X  Y means there is a path fromX to
Y in the graphS. We defineX ≈R Y whenever bothX  Y andY  X. To say thatX ≈R Y means that inS there is
both a path fromX to Y, and a path fromY to X; this implies thatX andY are part of the same attractor cycle.

A stateX ⊂ V is said to be “on an attractor” ifX  X. Let A ⊂ 2V be the set of all states that are on an attractor.
Since≈R defines an equivalence relation onA, it is possible to consider the quotient set [A] = A/R, wherein each
c ∈ [A] represents an attractor whose constituent states are given bycR. Conversely, given a stateX ⊂ V, if X ∈ A, we
denote the corresponding attractor as [X]. ThusA is simply the subset of the organism’s phase space that constitutes
attractor cycles, and the remaining states in 2V\A constitute tributaries which form the basins of attraction. If X ∈ A,
then [X] denotes the attractor thatX lies in. The number of attractors in the dynamics of the organism is denoted

α = |[A]|

.3. Models of Thermal Noise and Thermal Robustness

Thermal Noise. We encode the effects of environmental thermal noise on an organism’s dynamics using an
undirected graphN = (2V ,M) whose vertex set consists of all possible states, and whoseedge setM is defined in
terms of single bit mutations in state: (X, Y) ∈ M ⇐⇒ |(X ∪ Y)\(X ∩ Y)| = 1. Informally, a mutation is an edge
which connects from two states that differ only by 1 bit. For example, a 3-celled organism whose stateis 0, 0, 1 has
three possible mutations edges that connect to states 1, 0, 1, and 0, 1, 1, and 0, 0, 0. A mutation represents a non-
deterministic state transition that occurs when thermal noise induces one of the organism’s cells to “flip” state from 0
to 1 or from 1 to 0. The graphN is thus easily seen to be isomorphic to a|V |-dimensional hypercube.

Thermal robustness. Given an attractorc ∈ [A], we considerm(c) = {(X, Y) ∈ M | X ∈ cR, (X, Y) ∈ M} to be the
possible mutations ofc. We focus on mutations out of attractors (and disregard mutations out of basins of attraction),
because over long time scales and in the absence of thermal noise, an organism spends almost all of its time spinning
in its attractors. Out of the set of mutationsm(c), the subset that returns tocR is denotedr(c) = {(X, Y) ∈ m(c) | Y  
X} ⊆ m(c).

We define thethermal robustness of attractorc to beρ(c) = |r(c)|/|m(c)|. This quantity, being equal to the fraction
of mutation edges leavingc that return back toc, is an estimate of the probability that a random mutation will throw
the organism out of attractorc. We define themean thermal robustness of the organism as

ρ =
1
α

∑

c∈[A]

ρ(c).



Figure 2. Homogeneous organisms with bounded (left) and unbounded (right) numbers of attractors.

Figure 3. Robustness of homogeneous organisms of class 1 (left) and 2 (right).

Informally, this quantity captures the organism’s resilience to noise-induced deflections in its state space trajectory that
cause it to leave an otherwise stable attractor. In Figure 1 we see examples of what the phase space of two organisms
looks like at sizen = 9. Blue edges are used for attractor cycles, while black edges denote tributaries; mutationsr(c)
that return to the same attractor are in green, while those inm(c)\r(c) causing deflections to a different attractor are in
red.

4. Results

In what follows, we shall examine how the homogeneity (or heterogeneity) of an organism’s structure (C, f )
impacts its dynamics, both in terms of its (expected) number of attractors α, and its thermal robustness ρ.

4.1. Homogenous Networks

The two graphs of Figure 2 describe the number of attractorsα in homogeneous cyclic networks of increasing
size. Note that since|F | = 16, for each sizen there are only 16 possible distinct types homogeneous organisms.
The 16 curves corresponding to these 16 types have been segregated into two graphs: The graph on the left shows
homogeneous organisms whose structure is defined byf (V) in {0000, 0001, 0111, 1111}. In these 4 organisms we see
thatα remains bounded as the organisms grow in size–that is, it is either a constant 1, or it oscillates between 2 and 3.
In contrast, the graph on the right shows how the number of attractorsα changes for homogeneous organisms whose
structure is defined byf (V) in {0010, 0011, 0100, 0101,0110, 1000, 1001,1010, 1011,1100, 1101, 1110}. For these 12
organisms, we see that the number of attractorsα grows unboundedly as these organisms become larger.

Based on the results of these simulations we found it useful to define two classes of homogeneous organisms. A
homogeneous organism (Cn, f ) will be said to be ofClass 1 if its number of attractorsα remains uniformly bounded
by some constantb as it growsn → ∞. Alternately, an organism will be said to be ofClass 2 if for all constantsb,
there exists a sizenb at which the number of attractorsα exceedsb. Informally, homogeneous organisms designated
as Class 1 if they exhibit a bounded number of attractors, andare designated Class 2 otherwise. A growing organism
might seek an increasing number of attractors as it grows, since attractors represent distinct dynamic equilibria for the
system.

Having partitioned homogenous organisms on the basis of attractor density in this manner, we now turn to the
question of thermal robustness. Figure 3 displays thermal robustnessρ for growing homogeneous Class 1 organisms.



Figure 4. Attractors and robustness in heterogeneous organisms.

Figure 5. Exploring the relative benefits of heterogeneity on robustness.

The graph shows a constantρ = 1 corresponding to the organisms which exhibitingα = 1 attractor; this is expected,
since having just one attractor implies that thermal noise can pose no threat to the organism’s dynamic behavior at the
level of attractors. In contrast, we see that, when sufficiently large, homogeneous Class 1 organisms whose number
of attractorsα is bounded between between 2 and 3, haveρ = 0.5. The graphs show that during growth, the 4
homogeneous Class 1 organisms maintain relatively high thermal robustness.

By comparison, Class 2 homogeneous organisms exhibit decreasing thermal robustness, with lim infρ tending to
a value< 0.2 (the exceptions which prevent this from being a uniform limit are two functions who for size 2i spike
to ρ = 1 butα = 1). The graphs of Figure 3 thus show that while growing, the 12homogeneous Class 2 organisms
are unable to consistently maintain high thermal robustness, since this dynamical property is seen to tend to a value
< 0.2.

4.2. Heterogenous Networks

Given the dichotomous choice faced by homogeneous organisms with respect to numbers of attractorsα and
thermal robustnessρ, here we examine whether a departure from the homogeneity condition can serve to relieve the
organism from this bind. Unfortunately, the number of distinct heterogeneous organisms is|F ||V | = 16n, which is
too large to explore exhaustively for all but small values ofn. Therefore, in order to estimate expectedα andρ for
heterogeneous organisms of size n, we sample the space of heterogeneous organisms of sizen by constructing random
functions f : V → F . To select 1,000 random heterogeneous organisms, for example, we choose 1,000 random
functions f1, . . . , f1000. Eachfk assigns to cellv ∈ V a randomly chosen binary Boolean function from the 16 choices
available inF . In effect, each cell in the organism is operating a randomly generated truth table. The likelihood that
this sampling procedure will generate a homogeneous organism is 16−n+1, which tends to 0 for largen.

In Figure 4 we see the mean number of attractors ¯α and the mean thermal robustness ¯ρ for 1,000 randomly selected
heterogeneous organisms of each size. The graph on the left shows that the expected number of attractors ¯α increases
unboundedly with increasing size, in contrast to the limitations exhibited by Class 1 homogeneous organisms. The
graph on the right shows that the expected robustness ¯ρ approaches 0.5, a value that is superior to the< 0.2 limiting
experienced by Class 2 organisms, and comparable to the highrobustness exhibited by Class 1 organisms.



Figure 6. Heterogeneity makes it easy for a growing organismto achieve good robustness and increasing numbers of attractors.

4.3. Further Comparisons

In the previous section we considered the expected number ofattractors and expected robustness of heterogeneous
organisms. It is problematic, however, to argue on the basisof expected values alone, that a departure from homo-
geneity is in the interests of a growing organism. We interpret ”interests” to mean growth in number of cellular units
and number of attractors, without significant decline in thermal robustness. Here we consider the distribution of the
random variablesα andρ more carefully, to determine if this is in fact the case.

In Figure 5 the chart on the left shows the proportion of homogeneous organisms (both Class 1 and Class 2) whose
thermal robustness lies in each of the three bands: the low band: 0.0 ≤ ρ ≤ 0.2, the middle band: 0.2 < ρ ≤ 0.8, and
the high band: 0.8 < ρ ≤ 1. The analogous breakdown for heterogeneous organisms is shown in the chart on the right.
Here we see that only the four Class 1 homogeneous organisms maintain uniformρ > 0.2; the rest suffer from poor
robustness as they grow. In contrast, the chart on the right shows that even though the expected thermal robustness ¯ρ

of heterogeneous organisms decreases as their size increases, the relative proportion of heterogeneous organisms for
which robustness is very poorρ ≤ 0.2 is insignificant.

In Figure 6 the chart on the left estimates the probability that the robustnessρ of a randomly chosen heterogeneous
organism (of a given size) will be greater than the robustness achieved by all Class 2 organisms (of corresponding
size). What we see is that except for sizes of the form 2i (a set of measure 0), this probability tends to 1. The chart
on the right side of the figure shows the expected number of cyclesᾱ, for just those heterogeneous organisms whose
robustnessρ outperforms the robustness of all Class 2 organisms of the corresponding size. Disregarding organisms
of size 2i (a set of measure 0), the expected number of attractors exhibited by these robustness-favored heterogenous
organisms is seen to grow unboundedly.

5. Conclusion

In Part 4.1 of this investigation we saw that as an organism grows, it faces only two possible options if it remains
homogeneous. If it chooses to be a Class 1 organism, then it will enjoy high thermal robustnessρ but suffer from
bounded numbers of attractorsα. On the other hand, if it opts to be a Class 2 organism, then it can enjoy unbounded
numbers of attractorsα, but will suffer from low thermal robustnessρ.

In Part 4.2 of this investigation we saw that as heterogeneous organisms grow in size, the expected number of
attractorsα is unbounded, and expected thermal robustnessρ is high. Thus heterogenous organisms are, on average,
able to have their cake and eat it too. They circumvent the dilemma of the homogeneous organisms which we found
were unable to grow and exhibit both increasing numbers of attractorsα and high thermal robustness.

In Part 4.3 of this investigation we saw that a randomly chosen heterogeneous organism is very likely to outperform
its homogenous Class 2 counterparts of equivalent size withrespect to robustness. Moreover, such robustness-favored
heterogenous organisms typically enjoy increasing numbers of attractors as they grow. Therefore, if an organism
requires an increasing number of attractors as it grows, andhigh thermal robustness is naturally preferred, then het-
erogeneous organisms will be selected.
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